114 research outputs found

    Spreading of α-Synuclein and Tau: A Systematic Comparison of the Mechanisms Involved

    Get PDF
    Alzheimer's disease (AD) and Parkinson's disease (PD) are age-associated neurodegenerative disorders characterized by the misfolding and aggregation of alpha-synuclein (aSyn) and tau, respectively. The coexistence of aSyn and tau aggregates suggests a strong overlap between tauopathies and synucleinopathies. Interestingly, misfolded forms of aSyn and tau can propagate from cell to cell, and throughout the brain, thereby templating the misfolding of native forms of the proteins. The exact mechanisms involved in the propagation of the two proteins show similarities, and are reminiscent of the spreading characteristic of prion diseases. Recently, several models were developed to study the spreading of aSyn and tau. Here, we discuss the mechanisms involved, the similarities and differences between the spreading of the two proteins and that of the prion protein, and the different cell and animal models used for studying these processes. Ultimately, a deeper understanding of the molecular mechanisms involved may lead to the identification of novel targets for therapeutic intervention in a variety of devastating neurodegenerative diseases

    A biomedicina na prevenção, diagnóstico e terapia de doenças

    Get PDF
    Biomedicine is becoming of utmost importance in the prevention, diagnosis, and therapy of many disorders affecting the human population. In addition, it contributes for a significant improvement of life style and, consequently, to increased longevity. The molecular characterization of the health status of the populations, and the new disciplines emerging with technological progress, make us confident in the successful translation of new knowledge into the clinical practice.A biomedicina assume um papel cada vez mais importante na prevenção, diagnóstico e terapia de inúmeras doenças que afectam a população mundial, contribuindo para uma significativa melhoria das condições de vida e um consequente aumento da longevidade. A caracterização molecular das populações no contexto do seu estado de saúde, e as novas disciplinas que surgem dos avanços tecnológicos, permitem-nos estar optimistas no que respeita à translação dos novos conhecimentos adquiridos para a prática clínica

    Pharmacological Modulators of Tau Aggregation and Spreading

    Get PDF
    Tauopathies are neurodegenerative disorders characterized by the deposition of aggregates composed of abnormal tau protein in the brain. Additionally, misfolded forms of tau can propagate from cell to cell and throughout the brain. This process is thought to lead to the templated misfolding of the native forms of tau, and thereby, to the formation of newer toxic aggregates, thereby propagating the disease. Therefore, modulation of the processes that lead to tau aggregation and spreading is of utmost importance in the fight against tauopathies. In recent years, several molecules have been developed for the modulation of tau aggregation and spreading. In this review, we discuss the processes of tau aggregation and spreading and highlight selected chemicals developed for the modulation of these processes, their usefulness, and putative mechanisms of action. Ultimately, a stronger understanding of the molecular mechanisms involved, and the properties of the substances developed to modulate them, will lead to the development of safer and better strategies for the treatment of tauopathiesA.D.-M. is supported by a postdoctoral fellowship from the Galician Government (Programa de axuda á etapa posdoutoral, XUGA, GAIN, ED481B 2017/053). T.F.O. is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—EXC 2067/1-390729940S

    Yeast as a model organism to study diseases of protein misfolding

    Get PDF
    Dissertação de Doutoramento em Ciências Biomédicas apresentada ao Instituto de Ciências Biomédicas de Abel Salazar da Universidade do Port

    Changes in α-Synuclein Posttranslational Modifications in an AAV-Based Mouse Model of Parkinson's Disease

    Get PDF
    Parkinson's disease (PD) pathology is characterized by the loss of dopaminergic neurons of the nigrostriatal system and accumulation of Lewy bodies (LB) and Lewy neurites (LN), inclusions mainly composed of alpha-synuclein (alpha-Syn) fibrils. Studies linking the occurrence of mutations and multiplications of the alpha-Syn gene (SNCA) to the onset of PD support that alpha-Syn deposition may play a causal role in the disease, in line with the hypothesis that disease progression may correlate with the spreading of LB pathology in the brain. Interestingly, LB accumulate posttranslationally modified forms of alpha-Syn, suggesting that alpha-Syn posttranslational modifications impinge on alpha-Syn aggregation and/or toxicity. Here, we aimed at investigating changes in alpha-Syn phosphorylation, nitration and acetylation in mice subjected to nigral stereotaxic injections of adeno-associated viral vectors inducing overexpression of human alpha-Syn (AAV-h alpha-Syn), that model genetic PD with SNCA multiplications. We detected a mild increase of serine (Ser) 129 phosphorylated alpha-Syn in the substantia nigra (SN) of AAV-h alpha-Syn-injected mice in spite of the previously described marked accumulation of this PTM in the striatum. Following AAV-h alpha-Syn injection, tyrosine (Tyr) 125/136 nitrated alpha-Syn accumulation in the absence of general 3-nitrotirosine (3NT) or nitrated-Tyr39 alpha-Syn changes and augmented protein acetylation abundantly overlapping with alpha-Syn immunopositivity were also detected

    RAGE against the glycation machine in synucleinopathies : time to explore new questions

    Get PDF
    Oligomerization and aggregation of misfolded forms of α-synuclein are believed to be key molecular mechanisms in Parkinson’s disease (PD) and other synucleinopathies, so extensive research has attempted to understand these processes. Among diverse post-translational modifications that impact α-synuclein aggregation, glycation may take place at several lysine sites and modify α-synuclein oligomerization, toxicity, and clearance. The receptor for advanced glycation end products (RAGE) is considered a key regulator of chronic neuroinflammation through microglial activation in response to advanced glycation end products, such as carboxy-ethyl-lysine, or carboxy-methyl-lysine. The presence of RAGE in the midbrain of PD patients has been reported in the last decades and this receptor was proposed to have a role in sustaining PD neuroinflammation. However, different PD animal models demonstrated that RAGE is preferentially expressed in neurons and astrocytes, while recent evidence demonstrated that fibrillar, non-glycated α-synuclein binds to RAGE. Here, we summarize the available data on α-synuclein glycation and RAGE in the context of PD, and discuss about the questions yet to be answered that may increase our understanding of the molecular bases of PD and synucleinopathies

    Small molecule fisetin modulates alpha-Synuclein aggregation

    Get PDF
    Funding Information: iNOVA4Health Research Unit (LISBOA-01-0145-FEDER-007344), which is co-funded by Funda??o para a Ci?ncia e Tecnologia (FCT)/Minist?rio da Ci?ncia e do Ensino Superior, through national funds, and by FEDER under the PT2020 Partnership Agreement, is acknowledged. Authors would like to acknowledge FCT for financial support of RR (SFRH/BD/116597/2016). JP, RR, GG, and CNS acknowledges funding via BacHBerry (Project No. FP7-613793; www.bachberry.eu). RM is funded by FCT Scientific Employment Stimulus Contract CEEC/04567/CBIOS/2020. TFO was supported by the DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) and is currently supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany?s Excellence Strategy?EXC 2067/1-390729940. It is also acknowledged the European Research Council (ERC) under the European Union?s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 804229. Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Phenolic compounds are thought to be important to prevent neurodegenerative diseases (ND). Parkinson’s Disease (PD) is a neurodegenerative disorder known for its typical motor features, the deposition of α-synuclein (αsyn)-positive inclusions in the brain, and for concomitant cellular pathologies that include oxidative stress and neuroinflammation. Neuroprotective activity of fisetin, a dietary flavonoid, was evaluated against main hallmarks of PD in relevant cellular models. At physiologically relevant concentrations, fisetin protected SH-SY5Y cells against oxidative stress overtaken by tert-butyl hydroperoxide (t-BHP) and against methyl-4-phenylpyridinuim (MPP+)-induced toxicity in dopaminergic neurons, the differentiated Lund human Mesencephalic (LUHMES) cells. In this cellular model, fisetin promotes the increase of the levels of dopamine transporter. Remarkably, fisetin reduced the percentage of cells containing αsyn inclusions as well as their size and subcellular localization in a yeast model of αsyn aggregation. Overall, our data show that fisetin exerts modulatory activities toward common cellular pathologies present in PD; remarkably, it modulates αsyn aggregation, supporting the idea that diets rich in this compound may prove beneficial.publishersversionpublishe

    Mutation of Tyrosine Sites in the Human Alpha-Synuclein Gene Induces Neurotoxicity in Transgenic Mice with Soluble Alpha-Synuclein Oligomer Formation

    Get PDF
    Overexpression of α-synuclein with tyrosine mutated to phenylalanine at position 125 leads to a severe phenotype with motor impairment and neuropathology in Drosophila. Here, we hypothesized that tyrosine mutations would similarly lead to impaired motor performance with neuropathology in a rodent model. In transgenic mice (ASO), tyrosines at positions 125, 133, and 136 in human α-synuclein were mutated to phenylalanine and cloned into a Thy1.2 expression vector, which was used to create transgenic mouse lines on a mixed genetic background TgN(Thy-1-SNCA-YF)4Emfu (YF). The YF mice had a decreased lifespan and displayed a dramatic motor phenotype with paralysis of both hind- and forelegs. Post-translational modification of α-synuclein due to phosphorylation of serine 129 is often seen in inclusions in the brains of patients with α-synucleinopathies. We observed a slight but significant increase in phosphorylation of serine 129 in the cytosol in YF mice compared to age-matched human α-synuclein transgenic mice (ASO). Conversely, significantly decreased phosphorylation of serine 129 was seen in synaptosomes of YF mice that also contained higher amounts of soluble oligomers. YF mice deposited full-length α-synuclein aggregates in neurons widespread in the CNS with the main occurrence in the forebrain structures of the cerebral cortex, the basal ganglia, and limbic structures. Full-length α-synuclein labeling was also prominent in many nuclear regions of the brain stem, deep cerebellar nuclei, and cerebellar cortex. The study shows that the substitution of tyrosines to phenylalanine in α-synuclein at positions 125, 133, and 136 leads to severe toxicity in vivo. An insignificant change upon tyrosine substitution suggests that the phosphorylation of serine 129 is not the cause of the toxicity

    Bioprospection of Natural Sources of Polyphenols with Therapeutic Potential for Redox-Related Diseases

    Get PDF
    Funding: iNOVA4Health-UID/Multi/04462/2013, a program financially supported by Fundação para a Ciência e Tecnologia/Ministério da Educação e Ciência, through national funds and co-funded by FEDER under the PT2020 Partnership Agreement is acknowledged. This work was supported by Fundação para a Ciência e Tecnologia (IF/01097/2013 to C.N.S.), by The Scottish Government Rural and Environment Science and Analytical Services Division (A.F. and D.S.), and BacHBerry FP7-KBBE-2013-613793 (R.M., A.F., C.J., I.C., G.G., R.R.-R., J.P., A.M., C.D., D.S. and C.N.S.). T.F.O. was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), and is currently supported by the DFG under Germany’s Excellence Strategy—EXC 2067/1-390729940.Plants are a reservoir of high-value molecules with underexplored biomedical applications. With the aim of identifying novel health-promoting attributes in underexplored natural sources, we scrutinized the diversity of (poly)phenols present within the berries of selected germplasm from cultivated, wild, and underutilized Rubus species. Our strategy combined the application of metabolomics, statistical analysis, and evaluation of (poly)phenols' bioactivity using a yeast-based discovery platform. We identified species as sources of (poly)phenols interfering with pathological processes associated with redox-related diseases, particularly, amyotrophic lateral sclerosis, cancer, and inflammation. In silico prediction of putative bioactives suggested cyanidin-hexoside as an anti-inflammatory molecule which was validated in yeast and mammalian cells. Moreover, cellular assays revealed that the cyanidin moiety was responsible for the anti-inflammatory properties of cyanidin-hexoside. Our findings unveiled novel (poly)phenolic bioactivities and illustrated the power of our integrative approach for the identification of dietary (poly)phenols with potential biomedical applications.publishersversionpublishe
    corecore